

AGRUPAMENTO DE ESCOLAS RIBEIRO SANCHES (161214)

Matemática

12º ano

Ficha de trabalho nº 1

A – acontecimento (ou evento)

 \overline{A} - acontecimento contrário

S – espaço amostral ou conjuntos de resultados (também representado por **E** ou Ω .

 \emptyset ou $\{\}$ - conjunto vazio

$$A \cup \overline{A} = S$$

$$A \cap \overline{A} = \phi$$

Propriedades	Reunião	Intersecção
Comutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Elemento neutro	$A \cup \phi = \phi \cup A = A$	$A \cap S = S \cap A = A$
Elemento absorvente	$A \cup S = S \cup A = S$	$A \cap \phi = \phi \cap A = \phi$
Idempotência	$A \cup A = A$	$A \cap A = A$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Leis de De Morgan

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Lei de dupla negação

$$\overline{A} = A$$

Nota – A diferença A-B representa-se por $A \setminus B$ e lê-se A menos B, isto é, $A \setminus B = A \cap \overline{B}$

Exercícios:

1 – Sendo A e B dois acontecimentos quaisquer de um conjunto de resultados, prove que:

$$\mathbf{a)} \quad \overline{\left(\overline{A} \cap B\right)} \cap \overline{A} = \overline{A \cup B}$$

b)
$$\overline{(B \cup \overline{A})} \cup \overline{(B \cup A)} = \overline{B}$$

c)
$$(\overline{\overline{A} \cup B}) \cap B = S$$

d)
$$\overline{(A \cup B) \cup \overline{A}} = \phi$$

e)
$$(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = A \cup B$$

$$\mathbf{f)} \quad \overline{(A \setminus B)} = \overline{A} \cup B$$

g)
$$(A \cup B) \cap (A \cup \overline{B}) \cap (\overline{A} \cup B) = A \cap B$$

2 – Mostre que se,
$$B \subset A$$
 vem $A \setminus (A \setminus B) = B$.

3 – Prove que
$$A \cap \overline{(A \cap \overline{B})} = A \cap B$$
.

- 4 Sendo A, B e C três acontecimentos quaisquer de um conjunto de resultados, mostre que:
 - a) $(A \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup \overline{B} \cup \overline{C} = S$
 - **b)** $((\overline{A \cap B}) \cap (\overline{A \cap C}) \cup A) = \phi$
- 5 Supondo que A e B são acontecimentos de um mesmo espaço S, mostre que:
 - a) $A \cap (\overline{A \cup B})$ é um acontecimento impossível;
 - b) $(A \cap B) \cup (A \cap \overline{B})$ é o acontecimento A.
- 6 Num espaço S, considere dois acontecimentos A e B, diferentes, não vazios nem certos. Indique uma condição suficiente para:
 - a) $A \backslash B = A$;
 - **b)** $A \setminus B = \phi$;
 - c) $A \cap B = A$;
 - $\mathbf{d)} \quad A \cup B = A \, .$
- 7 Sejam A e B dois acontecimentos incompatíveis de um espaço S, prove que:
 - a) $\overline{A} \cup \overline{B} = S$;
 - **b)** $A \cap (B \cup \overline{A}) = \phi$.
- **8** Prove que se, $A \in B$ são disjuntos, $A \cap (B \cup \overline{A}) = \phi$.
- 9 Mostre que $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$.
- 10 Demonstre que $A B = A (A \cap B)$.
- 11 Sejam A e B dois acontecimentos de um espaço S, prove que:
 - a) $A \cap \overline{(A \cap \overline{B})} = A \cap B$;
 - **b)** $A \cap [(A \setminus B) \cup (B \setminus A)] = A \setminus B$;
 - c) $\overline{(A \setminus B) \cup (B \setminus A)} = (\overline{A} \cap \overline{B}) \cup (A \cap B);$
 - d) $A \setminus (B \cup C) = (A \setminus B) \setminus C$.